Search results

1 – 10 of 23
Article
Publication date: 2 August 2018

Ramadevi B., Sugunamma V., Anantha Kumar K. and Ramana Reddy J.V.

The purpose of this paper is to focus on MHD unsteady flow of Carreau fluid over a variable thickness melting surface in the presence of chemical reaction and non-uniform heat…

Abstract

Purpose

The purpose of this paper is to focus on MHD unsteady flow of Carreau fluid over a variable thickness melting surface in the presence of chemical reaction and non-uniform heat sink/source.

Design/methodology/approach

The flow governing partial differential equations are transformed into ordinary ones with the help of similarity transformations. The set of ODEs are solved by a shooting technique together with the R.K.–Fehlberg method. Further, the graphs are depicted to scrutinize the velocity, concentration and temperature fields of the Carreau fluid flow. The numerical values of friction factor, heat and mass transfer rates are tabulated.

Findings

The results are presented for both Newtonian and non-Newtonian fluid flow cases. The authors conclude that the nature of three typical fields and the physical quantities are alike in both cases. An increase in melting parameter slows down the velocity field and enhances the temperature and concentration fields. But an opposite outcome is noticed with thermal relaxation parameter. Also the elevating values of thermal relaxation parameter/ wall thickness parameter/Prandtl number inflate the mass and heat transfer rates.

Originality/value

This is a new research article in the field of heat and mass transfer in fluid flows. Cattaneo–Christov heat flux model is used. The surface of the flow is assumed to be melting.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 December 2020

Pramod Kumar Aylapogu, Madhu Sudan Donga, Venkatachari D. and RamaDevi B.

The suggested antenna has a switched mechanism among the successive elements of the radiating patch. The purpose of this paper is to develop high gain and less interference at…

Abstract

Purpose

The suggested antenna has a switched mechanism among the successive elements of the radiating patch. The purpose of this paper is to develop high gain and less interference at higher frequencies.

Design/methodology/approach

The design geometry of the suggested high gain switched beam Yagi-Uda antennas. The constructed antenna has been developed with Rogers Substrate, relative permittivity (εr) of 4.4, tangent of loss 0.0009 and with height of 1.6 mm. The proposed antenna has an input impedance of 50, and it is connected to input feed line with 2 mm.

Findings

In forthcoming life, the antennas play key role in all the wireless devices, because these devices perform with high gain and high efficacy.

Originality/value

The pivotal principle of this paper is to accomplish the gain as high, high directivity and interference is low at higher frequencies. Therefore, it is more applicable to 5G mobile communications and millimeter wave communications.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 8 August 2019

Jawad Raza, Fateh Mebarek-Oudina and B. Mahanthesh

The purpose of this paper is to present an exploration of multiple slips and temperature dependent thermal conductivity effects on the flow of nano Williamson fluid over a…

Abstract

Purpose

The purpose of this paper is to present an exploration of multiple slips and temperature dependent thermal conductivity effects on the flow of nano Williamson fluid over a slendering stretching plate in the presence of Joule and viscous heating aspects. The effectiveness of nanoparticles is deliberated by considering Brownian moment and thermophoresis slip mechanisms. The effects of magnetism and radiative heat are also deployed.

Design/methodology/approach

The governing partial differential equations are non-dimensionalized and reduced to multi-degree ordinary differential equations via suitable similarity variables. The subsequent non-linear problem treated for numerical results. To measure the amount of increase/decrease in skin friction coefficient, Nusselt number and Sherwood number, the slope of linear regression line through the data points are calculated. Statistical approach is implemented to analyze the heat transfer rate.

Findings

The results show that temperature distribution across the flow decreases with thermal conductivity parameter. The maximum friction factor is ascertained at stronger magnetic field.

Originality/value

In the current paper, the magneto-nano Williamson fluid flow inspired by a stretching sheet of variable thickness is examined numerically. The rationale of the present study is to generalize the studies of Mebarek-Oudina and Makinde (2018) and Williamson (1929).

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 November 2019

Muhammad Sohail and Sana Tariq

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary…

Abstract

Purpose

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary layer flow of a yield exhibiting material. The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws that involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system. The purpose of this paper is to find the influence of different emerging parameters on fluid velocity, temperature and transport of species.

Design/methodology/approach

Reconstructed nonlinear boundary layer ordinary differential equations are analyzed through eigenvalues and eigenvectors. Due to the complexity and non-existence of the exact solution of the transformed equations, a convergent series solution by the homotopy algorithm is also derived. The reliability of the applied scheme is presented by comparing the obtained results with the previous findings.

Findings

Physical quantities of interest are displayed through graphs and tables and discussed for sundry variables. It is discerned that higher magnetic influence slows down fluid motion, whereas concentration and temperature profiles upsurge. Reliability of the recommended scheme is monitored by comparing the obtained results for the dimensionless stress as a limiting case of previous findings and an excellent agreement is observed. Higher values of Schmidt number reduce the concentration profile, whereas mounting the values of Prandtl number reduces the dimensionless temperature field. Moreover, heat and species transfer rates increase by mounting the values of thermal and concentration relaxation times.

Originality/value

The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws which involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 September 2018

Anantha Kumar K., Sugunamma V., Sandeep N. and Ramana Reddy J.V.

The purpose of this paper is to scrutinize the heat and mass transfer attributes of three-dimensional bio convective flow of nanofluid across a slendering surface with slip…

Abstract

Purpose

The purpose of this paper is to scrutinize the heat and mass transfer attributes of three-dimensional bio convective flow of nanofluid across a slendering surface with slip effects. The analysis is carried out subject to irregular heat sink/source, thermophoresis and Brownian motion of nanoparticles.

Design/methodology/approach

At first, proper transmutations are pondered to metamorphose the basic flow equations as ODEs. The solution of these ODEs is procured by the consecutive application of Shooting and Runge-Kutta fourth order numerical procedures.

Findings

The usual flow fields along with density of motile microorganisms for sundry physical parameters are divulged via plots and scrutinized. Further, the authors analyzed the impact of same parameters on skin friction, heat and mass transfer coefficients and presented in tables. It is discovered that the variable heat sink/source parameters play a decisive role in nature of the heat and mass transfer rates. The density of motile microorganisms will improve if we add Al-Cu alloy particles in regular fluids instead of Al particles solely. A change in thermophoresis and Brownian motion parameters dominates heat and mass transfer performance.

Originality/value

To the best of the knowledge, no author made an attempt to investigate the flow of nanofluids over a variable thickness surface with bio-convection, Brownian motion and slip effects.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 March 2024

U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang and Bengt Ake Sunden

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is…

Abstract

Purpose

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.

Design/methodology/approach

The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.

Findings

The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.

Originality/value

The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 16 December 2022

Uchenna Luvia Ezeamaku, Chinyere Ezekannagha, Ochiagha I. Eze, Nkiru Odimegwu, Angela Nwakaudu, Amarachukwu Okafor, Innocent Ekuma and Okechukwu Dominic Onukwuli

The impact of potassium permanganate (KMnO4) treatment on the tensile strength of an alkali-treated pineapple leaf fiber (PALF) reinforced with tapioca-based bio resin (cassava…

748

Abstract

Purpose

The impact of potassium permanganate (KMnO4) treatment on the tensile strength of an alkali-treated pineapple leaf fiber (PALF) reinforced with tapioca-based bio resin (cassava starch) was studied.

Design/methodology/approach

The PALF was exposed to sodium hydroxide (NaOH) treatment in varying concentrations of 2.0, 3.7, 4.5 and 5.5g prior to the fiber treatment with KMnO4. The treated and untreated PALFs were reinforced with tapioca-based bio resin. Subsequently, they were subjected to Fourier transform infrared (FTIR) and tensile test analysis.

Findings

The FTIR analysis of untreated PALF revealed the presence of O-H stretch, N-H stretch, C=O stretch, C=O stretch and H-C-H bond. The tensile test result confirmed the highest tensile strength of 35N from fiber that was reinforced with 32.5g of cassava starch and treated with 1.1g of KMnO4. In comparison, the lowest tensile strength of 15N was recorded for fiber reinforced with 32.5g of cassava starch without KMnO4 treatment.

Originality/value

Based on the results, it could be deduced that despite the enhancement of bioresin (cassava starch) towards strength-impacting on the fibers, KMnO4 treatment on PALF is very vital for improved tensile strength of the fiber when compared to untreated fibers. Hence, KMnO4 treatment on alkali-treated natural fibers preceding reinforcement is imperative for bio-based fibers.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 3
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 12 October 2020

Mehboob Ali, F. Sultan, Waqar Azeem Khan, M. Shahzad, Hina Arif and M. Irfan

The purpose of this paper is to investigate the heat transportation rate by using Cattaneo–Christov heat flux model. Furthermore, homogeneous-heterogeneous reaction is also…

37

Abstract

Purpose

The purpose of this paper is to investigate the heat transportation rate by using Cattaneo–Christov heat flux model. Furthermore, homogeneous-heterogeneous reaction is also deliberated in the modeling of concentration expression.

Design/methodology/approach

The nonlinear PDEs are reduced to ODEs via implementation of applicable transformations. Numerical scheme bvp4c is used to obtain convergent solutions.

Findings

The main findings are to characterize the generalized Fourier’s heat flux and homogeneous-heterogeneous reactions in 3D flow of non-Newtonian cross fluid.

Originality/value

It is to certify that this paper is neither published earlier nor submitted elsewhere.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Article
Publication date: 3 October 2016

D. Ramadevi, Angappa Gunasekaran, Matthew Roy, Bharatendra K. Rai and S.A. Senthilkumar

The purpose of this paper is to develop a framework for the improvement of healthcare services through an effective human resource management system. The case study highlights a…

5023

Abstract

Purpose

The purpose of this paper is to develop a framework for the improvement of healthcare services through an effective human resource management system. The case study highlights a need to analyze human resource management processes that exist in healthcare sector and suggests better ways to achieve higher levels of patient satisfaction.

Design/methodology/approach

The methodology consists of first developing a conceptual framework for human resource management in healthcare industry. The proposed framework comprises of three parts: inputs which include determining employee competencies, HR planning, job analysis, recruitment, selection, compensation benefits, pay/rewards, labor and employee relations; processes (training and development) focus on healthcare systems; and outputs which include quality, cost, technology, and responsiveness leading to patient satisfaction. Then, the framework has been studied with help of a case study conducted in a hospital in India.

Findings

The most important skill required for healthcare workforce to deliver high-quality care to patients is the human resource development. By appropriate workforce development, healthcare organizations can provide high-quality services to patients. Finally, it derives a set of conclusions from the case study research. Further research would be needed to validate the framework through empirical data.

Originality/value

This research is a new attempt as there is a limited research done earlier on the framework of human resource management in healthcare system and services. It is designed to facilitate training and development at both the individual and at organizational levels, advocating a balance between “healthcare employee” and “healthcare system.”

Details

Industrial and Commercial Training, vol. 48 no. 8
Type: Research Article
ISSN: 0019-7858

Keywords

1 – 10 of 23